Variance spectra & moist conserved variables from the A-train Brian H. Kahn, João Teixeira, and Eric J. Fetzer Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA AIRS Science Team Meeting Caltech, Pasadena, California April 22nd, 2010 Thanks to Xianglei Huang and Ming Zhao #### **Two Research Thrusts** - Scale dependence of temperature & water vapor variance - T(z) and q(z) from **Atmospheric Infrared Sounder (AIRS)** compared to ECMWF - Climate model evaluation [and parameterization improvement] - Calculation of θ_e , θ_l & q_t - Combination of coincident AIRS & CloudSat (LWC) profiles - Morphology, seasonality [and comparisons to models] #### Aircraft-derived Mesoscale Spectra – u, v, θ # Scaling exponents & breaks observed with AIRS Variance scaling/structure function exponents of 1.0, 0.5 and 0.33 $\stackrel{\text{def}}{=}$ -3, -2, and -5/3, respectively #### Mesoscale break for T – not for Q – in AIRS #### Overall larger exponents in ECMWF #### **ECMWF-AIRS** Exponents #### ECMWF variance at small scales too small ## GFDL Similar to ECMWF (preliminary) ### 7 Years of AIRS – DJF '03 Clear Sky T(z) ### 7 Years of AIRS – DJF '04 Clear Sky T(z) ### 7 Years of AIRS – DJF '05 Clear Sky T(z) ### 7 Years of AIRS – DJF '06 Clear Sky T(z) ### 7 Years of AIRS – DJF '07 Clear Sky T(z) ### 7 Years of AIRS – DJF '08 Clear Sky T(z) ### 7 Years of AIRS – DJF '09 Clear Sky T(z) ## 7 Years of AIRS – DJF '03 Clear Sky q(z) ## 7 Years of AIRS – DJF '04 Clear Sky q(z) ## 7 Years of AIRS – DJF '05 Clear Sky q(z) ## 7 Years of AIRS – DJF '06 Clear Sky q(z) ## 7 Years of AIRS – DJF '07 Clear Sky q(z) ## 7 Years of AIRS – DJF '08 Clear Sky q(z) ## 7 Years of AIRS – DJF '09 Clear Sky q(z) #### Moist conserved variables: AIRS & CloudSat - Temperature and water vapor profiles from AIRS - "Best" quality Standard Product retrievals ± 25° [trade wind Cu regime] - LWC profiles from CloudSat - Flagged out precipitating clouds - Smooth LWC to AIRS vertical & horizontal resolution - Could go to smaller scales, but more complicated & requires assumptions • AIRS only: $$\theta_e = \left(T + \frac{L_v}{c_p} r_v\right) \left(\frac{p_0}{p}\right)^{R_d/c_p}$$ • AIRS + CloudSat: $$\theta_l \approx \theta - \frac{L_v}{c_{pd}} r_l$$ $r_t = r_v + r_l$ #### Cloud-resolving model results for shallow Cu ## Zonal and altitude variations consistent with expectations ## Seasonal variations in magnitude and latitudinal migration ## Significant zonal and altitude variations in skewness and kurtosis ## Seasonal variations in magnitude and patterns of skewness and kurtosis #### Take Home Messages - AIRS variance scaling reveals rich structure in T(z) and q(z) - Kahn et al. (2009), J. Climate - Comparisons of AIRS and ECMWF - Latitude/altitude patterns somewhat similar - ECMWF exponents larger than AIRS - ECMWF small-scale variability less than AIRS - Moist conserved variables from AIRS+CloudSat - Variability, skewness, kurtosis dependent on variable, altitude, latitude - Combined A-train data sets offer new global insights - Scale-dependent variability is the "turbulence" right in climate models? - New quantities obtained from multi-sensor observations